Left Termination of the query pattern
minimum_in_2(a, g)
w.r.t. the given Prolog program could not be shown:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
Clauses:
minimum(tree(X, void, X1), X).
minimum(tree(X1, Left, X2), X) :- minimum(Left, X).
Queries:
minimum(a,g).
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
minimum_in: (f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X1, Left, X2), X) → U1_ag(X1, Left, X2, X, minimum_in_ag(Left, X))
U1_ag(X1, Left, X2, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X1, Left, X2), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2) = minimum_in_ag(x2)
minimum_out_ag(x1, x2) = minimum_out_ag(x1)
tree(x1, x2, x3) = tree(x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x5)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X1, Left, X2), X) → U1_ag(X1, Left, X2, X, minimum_in_ag(Left, X))
U1_ag(X1, Left, X2, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X1, Left, X2), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2) = minimum_in_ag(x2)
minimum_out_ag(x1, x2) = minimum_out_ag(x1)
tree(x1, x2, x3) = tree(x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x5)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X1, Left, X2), X) → U1_AG(X1, Left, X2, X, minimum_in_ag(Left, X))
MINIMUM_IN_AG(tree(X1, Left, X2), X) → MINIMUM_IN_AG(Left, X)
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X1, Left, X2), X) → U1_ag(X1, Left, X2, X, minimum_in_ag(Left, X))
U1_ag(X1, Left, X2, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X1, Left, X2), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2) = minimum_in_ag(x2)
minimum_out_ag(x1, x2) = minimum_out_ag(x1)
tree(x1, x2, x3) = tree(x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x5)
MINIMUM_IN_AG(x1, x2) = MINIMUM_IN_AG(x2)
U1_AG(x1, x2, x3, x4, x5) = U1_AG(x5)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X1, Left, X2), X) → U1_AG(X1, Left, X2, X, minimum_in_ag(Left, X))
MINIMUM_IN_AG(tree(X1, Left, X2), X) → MINIMUM_IN_AG(Left, X)
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X1, Left, X2), X) → U1_ag(X1, Left, X2, X, minimum_in_ag(Left, X))
U1_ag(X1, Left, X2, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X1, Left, X2), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2) = minimum_in_ag(x2)
minimum_out_ag(x1, x2) = minimum_out_ag(x1)
tree(x1, x2, x3) = tree(x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x5)
MINIMUM_IN_AG(x1, x2) = MINIMUM_IN_AG(x2)
U1_AG(x1, x2, x3, x4, x5) = U1_AG(x5)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 1 less node.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X1, Left, X2), X) → MINIMUM_IN_AG(Left, X)
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X1, Left, X2), X) → U1_ag(X1, Left, X2, X, minimum_in_ag(Left, X))
U1_ag(X1, Left, X2, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X1, Left, X2), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2) = minimum_in_ag(x2)
minimum_out_ag(x1, x2) = minimum_out_ag(x1)
tree(x1, x2, x3) = tree(x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x5)
MINIMUM_IN_AG(x1, x2) = MINIMUM_IN_AG(x2)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X1, Left, X2), X) → MINIMUM_IN_AG(Left, X)
R is empty.
The argument filtering Pi contains the following mapping:
tree(x1, x2, x3) = tree(x2)
MINIMUM_IN_AG(x1, x2) = MINIMUM_IN_AG(x2)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(X) → MINIMUM_IN_AG(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
The TRS P consists of the following rules:
MINIMUM_IN_AG(X) → MINIMUM_IN_AG(X)
The TRS R consists of the following rules:none
s = MINIMUM_IN_AG(X) evaluates to t =MINIMUM_IN_AG(X)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
The DP semiunifies directly so there is only one rewrite step from MINIMUM_IN_AG(X) to MINIMUM_IN_AG(X).
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
minimum_in: (f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X1, Left, X2), X) → U1_ag(X1, Left, X2, X, minimum_in_ag(Left, X))
U1_ag(X1, Left, X2, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X1, Left, X2), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2) = minimum_in_ag(x2)
minimum_out_ag(x1, x2) = minimum_out_ag(x1, x2)
tree(x1, x2, x3) = tree(x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X1, Left, X2), X) → U1_ag(X1, Left, X2, X, minimum_in_ag(Left, X))
U1_ag(X1, Left, X2, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X1, Left, X2), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2) = minimum_in_ag(x2)
minimum_out_ag(x1, x2) = minimum_out_ag(x1, x2)
tree(x1, x2, x3) = tree(x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X1, Left, X2), X) → U1_AG(X1, Left, X2, X, minimum_in_ag(Left, X))
MINIMUM_IN_AG(tree(X1, Left, X2), X) → MINIMUM_IN_AG(Left, X)
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X1, Left, X2), X) → U1_ag(X1, Left, X2, X, minimum_in_ag(Left, X))
U1_ag(X1, Left, X2, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X1, Left, X2), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2) = minimum_in_ag(x2)
minimum_out_ag(x1, x2) = minimum_out_ag(x1, x2)
tree(x1, x2, x3) = tree(x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
MINIMUM_IN_AG(x1, x2) = MINIMUM_IN_AG(x2)
U1_AG(x1, x2, x3, x4, x5) = U1_AG(x4, x5)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X1, Left, X2), X) → U1_AG(X1, Left, X2, X, minimum_in_ag(Left, X))
MINIMUM_IN_AG(tree(X1, Left, X2), X) → MINIMUM_IN_AG(Left, X)
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X1, Left, X2), X) → U1_ag(X1, Left, X2, X, minimum_in_ag(Left, X))
U1_ag(X1, Left, X2, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X1, Left, X2), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2) = minimum_in_ag(x2)
minimum_out_ag(x1, x2) = minimum_out_ag(x1, x2)
tree(x1, x2, x3) = tree(x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
MINIMUM_IN_AG(x1, x2) = MINIMUM_IN_AG(x2)
U1_AG(x1, x2, x3, x4, x5) = U1_AG(x4, x5)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 1 less node.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X1, Left, X2), X) → MINIMUM_IN_AG(Left, X)
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X1, Left, X2), X) → U1_ag(X1, Left, X2, X, minimum_in_ag(Left, X))
U1_ag(X1, Left, X2, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X1, Left, X2), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2) = minimum_in_ag(x2)
minimum_out_ag(x1, x2) = minimum_out_ag(x1, x2)
tree(x1, x2, x3) = tree(x2)
U1_ag(x1, x2, x3, x4, x5) = U1_ag(x4, x5)
MINIMUM_IN_AG(x1, x2) = MINIMUM_IN_AG(x2)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X1, Left, X2), X) → MINIMUM_IN_AG(Left, X)
R is empty.
The argument filtering Pi contains the following mapping:
tree(x1, x2, x3) = tree(x2)
MINIMUM_IN_AG(x1, x2) = MINIMUM_IN_AG(x2)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
Q DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(X) → MINIMUM_IN_AG(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
The TRS P consists of the following rules:
MINIMUM_IN_AG(X) → MINIMUM_IN_AG(X)
The TRS R consists of the following rules:none
s = MINIMUM_IN_AG(X) evaluates to t =MINIMUM_IN_AG(X)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
The DP semiunifies directly so there is only one rewrite step from MINIMUM_IN_AG(X) to MINIMUM_IN_AG(X).